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Data

e Qualitative data

* Qualitative data is non-statistical and is typically unstructured or semi-
structured

* This data isn’t necessarily measured using hard numbers used to develop
graphs and charts

* Qualitative data can be used to ask the question “why.” It is investigative and
is often open-ended until further research is conducted

 Quantitative data

e Contrary to qualitative data, quantitative data is statistical and is typically
structured in nature — meaning it is more rigid and defined

* This data type is measured using numbers and values, making it a more
suitable candidate for data analysis



Artificial Intelligence (Al)
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Artificial Intelligence (Al)-1

* Autonomy

*The ability to perform tasks in complex
environments without constant guidance by a
user

* Adaptivity
*The ability to improve performance by learning
from experience



Artificial Intelligence (Al)-2

eLevels of Al

* Artificial Narrow Intelligence®
* Handles only one task at a time

* Artificial General Intelligence
* Artificial Super Intelligence

*now, but we don’t know about future
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Some Examples of Al

* ChatGPT
 Microsoft Al

* Self-driving cars
* Find route
* Computer vision
* Decision making under uncertainty

* Content recommendation
* Personalized information (Facebook, Twitter ..)
e Recommendations (Spotify, Netflix ...)
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Types of Al

* Artifical Intelligence (Al)

* Al is a popular field of computer science that concerns with building intelligent”
smart machines capable of performing intelligent tasks.

 Machine Learning (ML)

. ML(ijs ia type of Al that enables machines to learn from data and deliver predictive
models.

* The ML is not dependent on any explicit programming but the data fed into it.

* Based on the data you feed into ML algorithms and the training given to it, an output
is delivered.

e A predictive algorithm will create a predictive model.

* Deep Learning (DL)

e DL is a subfield of ML that is concered with algorithms inspired by the human brain’s
structure and functions known as artifical neural networks.

* A computer model can be taught using DL to run classification actions using pictures, texts,
sounds etc. as input.



Machine Learning (ML)



Machine Learning (ML)

Training

Ref: Machine Learning Community: A LinkedIn group

Testing
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ML

*Machine learning

* Systems that improve their performance in
each task with more and more experience or
data

https://www.youtube.com/watch?v=QFyM3w95fX|&t=16s
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https://www.youtube.com/watch?v=QFyM3w95fXI&t=16s

Al vs ML

Al

* Fixed outcomes: When there is a small or fixed number of outcomes.

* Risk of error: The penalty of error is too high to risk false positives and therefore only
rules—which will be 100 percent accurate—should be implemented.

* Not planning for ML: If those maintaining the system don’t have machine learning
knowledge and the business does not have plans to source for it moving forward.

ML

e Simple rules don’t apply: When there is no easily definable way to solve a task using
simple rules

. SBeed of change: When situations, scenarios, and data are changing faster than the
ility to contlnually write new rules.

* Natural language processing: Tasks that call for an understanding of language, or natural
language processing. Since there are an infinite number of ways to say somethmg



Types of Machine Learning (ML)

* Supervised Learning
* Unsupervised Learning



Machine Learning

* Supervised Learning

* |f we have a set of labeled data, we take this data and train the supervised
machine learning model. Once the model is trained, we predict the results
from the sample or the data in which the results are unknown.

* For example, an algorithm would be trained with pictures of dogs and other things, all
labeled by humans, and the machine would learn ways to identify pictures of dogs on its
own.

* Unsupervised Learning

* |f we provided with unlabeled data, then we could apply unsupervised

learning to predict pattern in that data.
* A program looks for patterns in unlabeled data. Unsupervised machine learning can find
patterns or trends that people aren’t explicitly looking for. For example, an unsupervised

machine learning program could look through online sales data and identify different
types of clients making purchases.

19



Supervised Learning Example (Regression)

* Predict the annual electricity consumption of households in Denmark based on
the size of the house (in square meters) and the number of electronic appliances

N the house' Electricity Consumption based on House Size and Number of Appliances

x Data Points
House Size (sqm) Number of Appliances | Annual Electricity
Consumption (kWh) i~

208.9 38 1259.7
150.5 37 1054.4
68.4 12 545.0

Multiple Linear Regression:
Electricity Consumption Model (kWh)=
2.04xHouse Size (sgm)+18.93xNumber
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Actual vs. Predicted Annual Electricity Consumption (Subset)
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Supervised Learning Example (Classification)

* Predict whether a household has "high" or "low" electricity consumption based
on the size of the house (in square meters) and the number of electronic
appliances in the house.

House Size (sqm) Number of Annual Electricity | Consumption Label
Appliances Consumption
(kWh)
38 high

208.9 1259.7
150.2 37 1054.4
68.4 12 545.0 low
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Decision Tree

Number of Appliances <= 29.5
gini = 0.499
samples = 160
value = [77, 83]
class = high

gini = 0.5
samples = 22

value = [11, 11]
class = low
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Unsupervised Learning Example (Clustering)

* The task is to discover the structure of the data (by grouping /
clustering similar items).

https://foolproofliving.com/spring-mix-salad/
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Unsupervised Learning Example (Clustering)-2

* let's group households based on their attributes: house size and
number of appliances. The idea would be to determine if there are
distinct clusters (or groups) of households that have similar
characteristics.

House Size (sqm) Number of Appliances | Annual Electricity
Consumption (kWh)

208.9 38 1259.7
150.5 37 1054.4
68.4 12 545.0
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Standardized Number of Appliances

1.5

1.0

0.5

0.0

—-0.5

-1.0

-1.5

K-Means Clustering of Households

¥ Cluster1 % . *® % ® %X *
- X Cluster 2
% Cluster 3 X X e X x
“ Centroids % X X ﬁ X x x X X
X 4 X X X X HX b 4
I X X X
x XX K > x x
X X X
I xX 20 b4 >
X — *
4 b4 KA 0
I x > x x X x K
> X )x X X KX X X
X X b 4 b
I X X X X X X X
X X X x X X
x x X X x x
I X X X X X X X X XX X
x x o d X X X X
X X X XX X b W oM n * >
—i.5 —i.U —[IJ.5 U.IU 0:5 le 1j5

Standardized House Size (sgm)
26



Meaningiul
Compression

Srructure Image

mier e Iy
CHscovery Cuszomer Fsrentio

Cladsificatian

Big dara Dimensionalin i Bt Idanity Fraucd

= - - ;
Winualistaian s . Elic itamion Chmtdenrd o Classification L¥iagnosnics

. = P Sclvartising Popularicy
Unsupervised supervised Predictian

Learning LE‘EI'I‘I i nF Wi ther

Ferecasting

oL asimamender
YRS

Clustering Regression
Targetoesd .

FMarketing

Machine W=

Girowih
Pradiceian

Markse
Ferecaiting

ST

Learning

Esrimating
lifz expeECianicy

Suporvised Learning  Unsupervised Learning

% clasaification ar
clusten
E catagorization "
dimansionality
rassion

% reg reduction

L3
Him, Ehee Tl ggearn differe s heaveen aupeeirviacd and sinaspervdsesd learmbng i thaa

suguerviseed learnd g deals with labseled dato while arsupervised learming deals
with umlnbehed dee Insupervised arning. wo e machine learming
nlgorichena for classifention snd regreasion. in onoapervissd lesrning, W haves
it Fioma s S o liismering.

i) imed | um.comy @ ksarthsn shona | | 'machine- lasrn rlpl-\!-uh:h!dﬂ\!r:r-



Deep Boltzmann Machine (DEM)
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Outlier

©FRANS LANTIN(E

https://www.pinterest.dk/pin/frans-lanting-sabah-borneo-tall-tree-rising-above-rainforest-canopy--121949102397261067/

*Qutliers are normally
removed during data
processing
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Anomaly

Abnormal Pattern

Normal Pattern

VS

Rebild Bakker
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Anomaly Detection

 Anomaly detection is a technique used to identify unusual patterns
that do not conform to expected behavior. In the context of our
dataset, we want to detect households that have unusual electricity
consumption patterns based on their house size and the number of
appliances.

House Size (sqm) Number of Appliances | Annual Electricity
Consumption (kWh)

208.9 38 1259.7
150.5 37 1054.4
68.4 12 545.0
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Time Series



Time Series

* An hourly time series dataset for a single household's electricity
consumption over a period of one week (168 hours). This will give us
a more granular view of consumption patterns.

Date and Time Hourly Consumption (kWh)
2022-01-01 00:00:00 4.567 kWh
2022-01-0101:00:00 3.060 kWh
2022-01-0102:00:00 3.854 kKWh
2022-01-0103:00:00 4.490 kWh

2022-01-0104:00:00 3.787 kWh



Electricity Consumption (kWh)

Hourly Electricity Consumption Over One Week

01
Jan
2022

02 03 04 05 06 07
There's a noticeable increase in consumption during evening hours (around 6 PM to 10 PM) due to the evening peak, indicating higher activity or usage.

Date and Hour
There's a dip in consumption during the early morning hours (around 1 AM to 5 AM) when most people are likely asleep, resulting in lower electricity usage.
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Hourly Electricity Consumption Forecast (Random Forest)

—— Training Data
—— Actual Test Data

——- Random Forest Forecast
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02
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Date and Hour
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Electricity Consumption (kWh)

—— Hourly Consumption
. ® Anomalies

Anomaly Detection in Hourly Electricity Consumption (lsolation Forest)

01
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2022

02
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04

Date and Hour

05

06

07
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Time-series Analysis
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Example
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Traditional (Non-Machine Learning) Approaches:

* Threshold-Based Monitoring: We could define static thresholds based on domain knowledge or by analyzing historical data.

For instance, if the vibration of a machine should never exceed a certain level under normal conditions, we can set an upper
limit and alert whenever this threshold is crossed.

» Statistical Methods: Techniques like the Z-score or the IQR (Interquartile Range) can be used to detect outliers based on
statistical properties of the data.

* Rolling Statistics: We can compute statistics (e.g., mean, standard deviation) on a rolling window and flag data points that
deviate significantly from these metrics.
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Threshold-Based Anomaly Detection Algorithm:

1. Compute Mean and Standard Deviation:

* For each sensor, calculate the mean and standard deviation based on the "normal" data.
2. Define Thresholds:

* Upper threshold: mean + k£ X standard deviation

* Lower threshold: mean — k x standard deviation

* Where k is a constant. We'lluse k = 2 for our example (i.e., values beyond two standard

deviations from the mean).

3. Detect Anomalies:

* For each data point in the test data, check if it lies outside the defined thresholds. If it

does, mark it as an anomaly.

Combined Anomaly Detection Using Euclidean Distance

100 — Euc‘lfean Distance from Centroid

=== Threghold

80

60

40

20

0 2000 4000 6000 8000

Euclidean Distance: Calculate the Euclidean distance of a test data point (a vector of sensor readings)
from the centroid (mean vector) of the normal data. If this distance exceeds a predefined threshold, flag
the point as an anomaly. 43



Unsupervised (Machine Learning based) Approaches:

* Clustering: Algorithms like K-means can be used to

35

30

25

20

15

10

05

00

1e-30

group data points. If a new data point doesn't belong
closely to any cluster, it could be an anomaly.

Dimensionality Reduction: Techniques like PCA
(Principal Component Analysis) can be used to reduce
the dimensionality of the dataset. Reconstruction

errors can be used to detect anomalies.
Anomaly Detection Using PCA
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Time Series Analysis

* Descriptive Analysis
* Compute mean, median, standard deviation etc. and/or identify patterns, trends and seasonality

* Feature Engineering
* Rolling mean, roalling standard deviation for each feature over a window of previous observations

* Anomaly Detection

* Detect unusual patterns that do not conform to expected behavior. This is essential for early fault detection in machines or
systems

* Forecasting
* Predict future values of the parameters based on historical data

e Causality Analysis

* Understand if changes in one parameter cause changes in another (e.g., does increased pressure lead to increased
temperature?)

* Frequency Analysis
* Decomcope the time series into its frequency components to understand periodic behaviors better

* Condition Monitoring & Predictive Maintenance
* Based on the time series data, predict when the machine might fail or require maintenance
* Optimization
* Find optimal operating conditions for the machine by analyzing the relationships between the parameters

e Simulation & What-If Analysis
* Simulate different scenarios to see the potential impact on the parameters (e.g., what if the pressure increases by 10%7?)



Predictive Maintenance (PM)

* Is all about predicting when equipment will fail so that maintenance
can be performed just in time to avoid unplanned downtime.

* The goal is to prevent unplanned reactive maintenance without
incurring costs associated with doing too much preventive
maintenance.

Goal: predicts if a machine is about to fail in the near future (e.g., in
the next 20 minutes)
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Predictive Maintenance Algorithm: 1 i
RollingStd (v, w) = 4| — Z (v; — RollingMean (v, w))?
w

j=i-w+l

1. Data Collection:

Let D be our dataset where each observation d; is atuple (¢, v, T, a, p, f,):
Similar calculations will be made for T', a, p, and f,..
D = {d,,ds,....,d,}
4, Model Training:
Where:
Train a model M using features from the feature engineering step and labels y:
* tisthe timestamp.

* v is the vibration reading. M f(D) — Y
* T is the temperature reading.
* ais the acoustic reading. Where f (D) represents the feature set derived from D.

* pisthe pressure reading.
* fristhe flow rate reading. Lol Eeldie

2. Labeling: For a new observation d without a label, the predicted failure probability P is given by:

For each observation d; at time ¢, assign a label y; based on whether a machine failure P(d) = M(f (d))

occurs within a certain window W following that observation:

If P(d) > 6, where 0 is a threshold, raise an alert indicating imminent failure.

1 if machine fails within window W after ¢

= 0 otherwise

3. Feature Engineering:

For each observation d; at time ¢, compute rolling mean and standard deviation for all the

sensor readings over different windows w. For instance, for the vibration reading:

1
RollingMean(v, w) = — E v;
w j=i—w+l 48



Sensor Readings
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Composite Health Index

* The Composite Health Index (CHI) is a synthesized metric derived
from multiple sensor readings or diagnostic indicators to represent
the overall health or condition of a system, machine, or equipment.
The primary purpose of CHI is to simplify the multidimensional health
information of a system into a single, easily interpretable metric

i . Composite Health Index
Composite Health Index Calculation:

The CHI at time ¢, denoted by CHI(¢), is a combination of the standardized readings from

all sensors. A simple approach, which we've used, is to take the arithmetic mean: ( (.(,

1l «—
CHI(t) = si(t)
m ZT 4.00 4.57 10.00

Here, mn is the total number of sensors. o . - - .

This CHI represents a single metric derived from all sensors that indicates the health status

of the machine at time . 50



Case Studies with SMVs



Case 1:

Issue:

Based on historical
consequences: Decision
of when and how to
prevent break down

Stigemaskine 1 (Phoenix radioline)

Maskine: 01

Input word 1, Binhaer: 0000000000100101

Indgang 0101:
Indgang 0102:
Indgang 0103:
Indgang 0104:
Indgang 0105:
Indgang 0106:

Maskine er startet

Taktfoler, ved indleb (B95.0)

Taktfoler ved udleb (B157.6)

Skav vange ved bore- eller mgtrikstation
Fejl pa en af skruemaskinerne

Alarm pa stigemaskine
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Date

F31-01-2018
321-01-2018
31-01-2018
21-01-2018
31-01-2018
31-01-2018
F31-01-2018
31-01-2018
31-01-2018
21-01-2018
31-01-2018
F31-01-2018
321-01-2018
31-01-2018
31-01-2018
21-01-2018
31-01-2018
F31-01-2018
321-01-2018
31-01-2018
21-01-2018
31-01-2018
F31-01-2018
31-01-2018
31-01-2018
31-01-2018
21-01-2018
31-01-2018
F31-01-2018
321-01-2018
31-01-2018
21-01-2018
31-01-2018
31-01-2018
F31-01-2018
31-01-2018
31-01-2018
21-01-2018

Time

15:37:56
15:42:26
15:43 208
15:4%:09
15:4%:15
15:A4Z:17F
15:A4%:23
15:43:25
15:23:370
15:A4%:33
15:A43%:38
15:A4%:39
15:43:55
15:34:203
1 5:434:008
15:44:11
15:44:2°F
15:A5:07F
15:47:52
15:49:34
15:49:471
15:A49:52
15:A49:55
15:49:59
15:50:202
1 5:50:03
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Figure 3: Sensor and alarm data overview.
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Input:

* Dataset D: A set of ordered tuples

Method:

1. Ensure Chronological Ordering:

(tl y My, pinl'}pmatla fl? 51,0y, hl): (t21 ma, pinZ'}poth: f?? S9, A2, hZ)a ... Where: ) Arrange the dataset D in increasing order based on the timeStamp t.

* { represents the timestamp.
* m represents the 'MachineON/OFF' attribute.
* pin represents the 'Paceln’ attribute.

* Doyt represents the 'PaceOut’ attribute.

* Window Size w: An integer representing the size of the rolling window.

* Prediction Lead Time k: An integer representing the desired lead time for predictions.

f represents the 'FaultyString' attribute.
s represents the 'ScrewMachineError' attribute.
a represents the 'Alarm' attribute.

h represents the 'HourOfDay' attribute.

4. Data Partitioning:

2. Compute Rolling Window Features:
* For each attribute x in the dataset D and for each timestamp ¢;:

3 . ) 1 w—1
Rolling Mean: 1, ;, = — Zj S

* Rolling Standard Deviation: 0. ;, = \/% Zj {}l(a’?tr-_j — Hey;)?

w—1

* For binary attributes, Rolling Sum: E:r.,t; = Zj 0 LTti_;
2. Prepare the Target Variable:

* Define the future machine status as: mit_ = My,

* Divide D into two subsets: Training dataset 1;,,;;, (comprising approximately 80% of

the tuples) and Test dataset D;.s; (comprising the remaining 20%).

Output: 5. Model Selection, Training, and Evaluation:
* Choose an appropriate machine learning model M.
* A predictive model M trained to forecast machine stops k£ minutes in advance using the * Train M using the rolling window features from D4, to predict m’.
rolling window features. * Evaluate M on D;.; to measure its predictive accuracy.
: Poieioioiiioos Iftikhar, N., Nordbjerg, F.E., Baattrup-Andersen, T. and

“uhwNR
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Jeppesen, K., 2020. Industry 4.0: sensor data analysis
using machine learning. In Data Management
Technologies and Applications: 8th International
Conference, DATA 2019, Prague, Czech Republic, July
26-28, 2019, Revised Selected Papers 8 (pp. 37-58).
Springer International Publishing.
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TimestampEngine_Temperature (°C) Oil_Pressure (psi) Fuel Level (%) Battery_Voltage (V) Car_Status Shifted_Car_Status (Target)
2023-01-01 08:00 90.5 40 30 9.9 0 # Predicted breakdown 60 minutes in advance
2023-01-01 08:10 91.0 41 29 4.6 0
2023-01-01 08:20 92.0 42 28 3.7 0
2023-01-01 08:30 935 43 27 2.8 0
2023-01-01 08:40 95.0 44 26 1.9 0
2023-01-01 08:50 96.0 45 25 0.0 0 # Car breaks down
2023-01-01 11:00 60.0 30 24 50.0 1 # Carrestarts
2023-01-01 11:10  61.0 30 23 49.0 1
2023-01-01 11:20 62.0 31 22 48.1 1
2023-01-01 11:30 63.0 32 21 47 4 1
32 20 46.5 1

2023-01-01 11:40 64.0
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cace 2. DESMI Ocean Guard A/S

- ballast water treatment systems

(Specializes in the development, manufacturing, sale and service of
IMO and USCG certified Ballast Water Management & Treatment
Systems)

3
‘o)
8
7

» While ballast water is essential for safe and efficient modern shipping operations, it
may pose serious ecological, economic and health problems due to the multitude of
marine species carried in ships’ ballast water. These include bacteria, microbes, small
invertebrates, eggs, cysts and larvae of various species.

> Issue: How it is made sure that water that is discharged into the sea is clean enough

@ ﬁﬁ ; @ %Eg_ based on IMO & UGCS standards.
Goes %;

1S —
Proposed Solution: .
> Gaigs oehey We proposed a solution based on online L)
‘_’c o balll'g:tdx‘agter f.\. te Ballast tanks ful machine learning to make sure that the o
at source port during voyage water that is released into the sea has
fulfilled the International Maritime
® _é @ ﬁﬁ L Organization (IMO) & United State - =
e G G Geological Survey (USCG) standards (i.e. .
t Heargo’ j Cargo hold the filtration plant is delivering optimal “
‘o fon \ s m performance). :

Discharging Ballast tanks empty ——— '
* @ Dballast water " = during voyage
at destination port = *
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Case 2 Continute

Online Machine Learning for Adaptive Ballast Water

Management
Nadeem Iftikhar Yi-Chen Lin
University College of Northern Denmark University College of Northern Denmark
Aalborg, Denmark Aalborg, Denmark
naif@ucn.dk yichenlintaiwan{@gmail com
Xiufeng Liu Finn Ebertsen Nordbjerg
Technical University of Denmark University College of Northern Denmark
Kgs. Lyngby, Denmark Aalborg, Denmark
xiuli@dtu.dk fen@ucn.dk

Algorithm 1: Online Machine Learning with Model Switch-
ing

mow = e M

B

&

14

15

[Input: A stream of sensor data X = {x).x2, ., xg } from
ships and ports, a training strategy 5
Dutput: A stream of predictions ¥ = {8, B2, - G } and
their confidence intervals & = {&;, &2, .. &x )

[nitialize a set of candidate machine learning models M with
random parameters &;
Initialize a null best model m™;
Initialize a null training trigger T;
fori=1 fon do
Receive a new input x;;
Predict the output gy = m™(x;: 0) and its confidence
interval &; using the best model;
COutput 4§; and &;;
Update the training trigger T based on the training
strategy 5;
if T is activated then
Train or update the models M using the available
data (X, Y);
Update the parameters &;
Evaluate the models M using different metrics;
Select the best model m® from M based on the
metrics and the smitabiity for the ship-port pair;
erud
end
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Figure 7: One of thhe ship’s live and forecast data visualized
with time-based line charts
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ML Workflow



Machine Learning Application Workflow

* Data and problem definition: The first step is to ask interesting questions.
What is the problem you are trying solve? Why is it important? Which
format of result answers your question? Is this a simple yes/no answer? Do
you need to pick one of the available questions?

e Data collection: Oncec}/ou have a problem to tackle, you will need the data.
Ask yourself what kind of data will help you answer the question. Can you
get the data from the available sources? Will you have to combine multiple
sources? Do you have to generate the data? Are there any sampling biases?
How much data will be required?

* Data preprocessing: The first data preﬁrocessing task is data cleaning. For
example, filling missing values, smoothing noisy data, removing outliers,
and resolving consistencies. This is usually followed by integration of
multiple data sources and data transformation to a specific range
(normalization), to value bins (discretized intervals), and to reduce the
number of dimensions.



Machine Learning Application Work Flow

* Data analysis and modeling with unsupervised and supervised learning:
Data analysis and modeling includes unsupervised and supervised machine
learning, statistical inference, and prediction. A wide varietn of machine
learning algorithms are available, including k-nearest neighbors, naive
Bayes, decision trees, support vector machines, logistic regression, k-
means, and so on. The choice of method to be deployed depends on the
problem definition discussed in the first step and the type of collected
data. The final product of this step is a model inferred from the data.

* Evaluation: The main issue models built with machine learning face is how
well they model the underlying data—if a model is too specific, that is, it
over fits to the data used for training, it is quite possible that it will not
perform well on a new data. The model can be too generic, meaning that it
under fits the training data. For example, when asked how the weather is
in California, it always answers sunny, which is indeed correct most of the
time. However, such a model is not really useful for making valid
predictions.
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Why Majority of Al/ML based
Student Project Fail..



Computer Science

| will think about you
later, if | have a time.
Now | am busy.

Please use me!
Do not disturb me

anymore, you little

Ci#/Java filthy worm...

Program
SCRUM
.Functio

.Code

- Methodology
- Design
- Programming
- Databases
- Testing
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Data Science

| will use you when | need you.

For the time being keep your
mouth shut, you disgusting Please use me!

Machine Learning
- Programming
Methodology/Design

thing...

Databases
Statistics

Testing
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Be Ready for the Change - When we start working with
Al/Machine learning then we must change the way we think,
analyze, plan, solve and test

 Start with data

* Preprocess and clean the data.

» Select and construct appropriate features.
Select an appropriate model family.
Optimize model hyperparameters.
Postprocess machine learning models.
Critically analyze the results obtained.

* Methodology
e Cross-industry standard process for data mining (CRISP-DM)
» Agile CRISP-DM
e Cognitive Project Management for Al (CPMAI)

https://www.forbes.com/sites/cognitiveworld/2020/01/19/why-
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https://www.forbes.com/sites/cognitiveworld/2020/01/19/why-agile-methodologies-miss-the-mark-for-ai--ml-projects/?sh=6898954f21ea
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Be Ready for the Change - When we start working with
Al/Machine learning then we must change the way we think,

analyze, plan, solve and test Cont.

* Testing

data

I—
I,

logic

desired behavior

Software 1.0 —

Traditional Software Systems Testing
e.g., unit, regression, integration testing

data
logic

Software 2.0

—

desired behavior

Testing Machine Learning-based Systems (model tests)
e.g., invariance, directional expectation, minimum functional testing

https://www.jeremyjordan.me/testing-ml/
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Be Ready for the Change - When we start working with
Al/Machine learning then we must change the way we think,
analyze, plan, solve and test Cont.

Problem:

Predict the eIectricitK consumption of a household based on the number of dayliﬁht hours. The
assumption here is that during shorter daylight hours (winter months), households use more

electricity for lighting.
Traditional approach:

def test_predict_consumption_traditional():
# Test for daylight hours less than 8
assert predict_consumption _traditional(7) == 130 # 100 base + 30 for lighting
assert predict_consumption _traditional(5) == 130 # 100 base + 30 for lighting

# Test for daylight hours 8 or more
assert predict _consumption_traditional(8) == 100 # just the base value

assert predict_consumption_traditional(10) == 100 # just the base value
67



Be Ready for the Change - When we start working with
Al/Machine learning then we must change the way we think,
analyze, plan, solve and test Cont. tinearRegression

Linear regression aims to fit a line to data points such that the sum of the squared distances

of the points from the line is minimized.
Givendata, y = ma + b, where:

* yis the output (e.g., electricity consumption).

Machine Learning Approach: * & is the input feature (eg, daylight hours).

* m isthe slope of the line.

* bisthe y-intercept.
# Test data

test_day/ight_hours = np.array([6.5, 8.5, 10,5]),reshape(-1, 1) Here, m and b are the parameters that the model will "learn" or optimize during training.

actual _consumptions = np.array([127.5, 107.5, 92.5]) # actual consumptions

def test_predict_consumption_ml():
predictions = model.predict(test_daylight _hours)
for i, prediction in enumerate(predictions):
# Assert that the error is within an acceptable range, let's say 10 units for this example

assert abs(prediction - actual _consumptions[i]) <= 10
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ML lifecycle

Model Creation >>

(N

Data extraction,

data cleaning, We.b
feature selection / Services
@ -2 @

Model Consumption >>

Try another Iterative Process Web/Console
del/Algorith to train & create a _

modade goritnm ML model |\/||_ Trained ML Run/Predict apps

(Repeat the process Model/Algorithm  Model/Algorithm =

until we get an (Training)

acceptable

prediction accuracy) 6\6"

Mobile apps

L

lth,

Evaluate Model o




Most Demanded Programming Languages in 2023
From 01-Jan-2022 o 31-May-2023

Top Programming Languages
for Al/ML

R  Java/lavaScript Scala
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The End
Thank You

Open for collaborations
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